A Distributed and Optimal Motion Planning Approach for Multiple Mobile Robots

نویسندگان

  • Yi Guo
  • Lynne E. Parker
چکیده

|We propose a distributed and optimal motion planning algorithm for multiple robots. The computationally expensive problem is decomposed into two modules { path planning and velocity planning. The D search method is applied in both modules, based on either geometric formulation or schedule formulation. Optimization is achieved at the individual robot level by de ning cost functions to minimize, and also at the team level by a global measurement function re ecting performance indices of interest as a team. Contrary to our knowledge of previous results on multirobot motion planning that either obtain optimal solutions through centralized and exhaustive computing, or achieve distributed implementations without considering any optimization issues, our approach combines these two features and explicitly optimizes performance functions through a distributed implementation. It is also one of the few that is capable of handling outdoor rough terrain environments and real time replanning. Simulations are shown on a Mars-like rough terrain using a 3D vehicle planner and control simulator. The algorithm was also implemented and successfully run on a group of Nomad 200 indoor robots. Keywords| Multi robots, motion planning, performance index, cost function, coordination diagram.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration

This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...

متن کامل

Optimal Load of Flexible Joint Mobile Robots Stability Approach

Optimal load of mobile robots, while carrying a load with predefined motion precision is an important consideration regarding their applications. In this paper a general formulation for finding maximum load carrying capacity of flexible joint mobile manipulators is presented. Meanwhile, overturning stability of the system and precision of the motion on the given end-effector trajectory are take...

متن کامل

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance

Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...

متن کامل

Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs

In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002